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Abstract. This paper studies the existence of a uniform global error bound when a convex
inequality g < 0, where g is a closed proper convex function, is perturbed. The perturbation
neighborhoods are defined by small arbitrary perturbations of the epigraph of its conjugate
function. Under certain conditions, it is shown that for sufficiently small arbitrary perturbations the
perturbed system is solvable and there exists a uniform global error bound if and only if g satisfies
the Slater condition and the solution set is bounded or its recession function satisfies the Slater
condition. The results are used to derive lower bounds on the distance to ill-posedness.
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1. Introduction

Given a feasible system of convex inequalities having a finite global error bound t

and the associated residual function r(x), the Euclidean distance from any point x to
the solution set is bounded by tr(x). The smallest global error bound can be
considered as the condition number of the system. The existence of a finite global
error bound and its applications in mathematical programming have been studied
extensively [5]. Since real-world problems typically have inaccurate data, it is
important to study the behavior of the smallest global error bound when the data of
convex inequalities undergo small changes.

The concept of a uniform global error bound or well-conditionedness for a finite
system of linear inequalites under small arbitrary perturbations was introduced by
Luo and Tseng [4]. Some related results include: The existence of a uniform global
error bound for linear inequalities and equalities in Banach spaces [3], for convex
inequalities defined by real continuous convex functions [1], for infinite systems of
linear inequalities [2], and stability property of a system of inequalities [8].

In this paper we study the existence of a uniform global error bound when a
convex inequality g < 0, where g is a closed proper convex function, is perturbed.
What are the data of a general closed proper convex function? This question can be
answered in a dual way. It is known that a closed proper convex function g is the
pointwise supremum of all affine functions h satisfying h < g, and the set of data
that defines such affine functions is equal to epi( g*), the epigraph of the conjugate
function of g. We consider epi( g*) as the data of g and our perturbation
neighborhoods are defined by small arbitrary perturbations of epi( g*). Under certain
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conditions, it is shown that for sufficiently small arbitrary perturbations the
perturbed system is solvable and there exists a uniform global error bound if and
only if g satisfies the Slater condition and the solution set is bounded or its recession
function satisfies the Slater condition. The results are used to derive lower bounds
on the distance to ill-posedness.

2. Notation and preliminaries

Given a convex inequality g(x)< 0, where g is a closed proper convex function on
nR , let S( g)5 hx : g(x)< 0j be the solution set and r(x, g)5maxhg(x), 0j be the

residual function. Let i?i be the Euclidean norm for a vector and d(x, C)5minhix 2
yi : y [Cj be the Euclidean distance from x to a nonempty closed convex set C. If
S( g)± 5, the smallest global error bound is defined as

d(x, S( g))
]]]t( g)5 sup .

r(x, g)x[⁄ S( g)

Let g* be the conjugate function of g, and epi(?) the epigraph of a function. It is
Tknown that [7, pp. 102–104] g(x)5 suph(a(u) x 2 b(u)) : u [U j, where U is an

n 1index set, a : U → R , b : U → R , and h(a(u), b(u)) : u [U j5 epi( g*). Consequent-
ly, the convex inequality g(x)< 0 is closely related to the following infinite system
of linear inequalities defined by ha, bj

Ta(u) x 2 b(u)< 0 for all u [U, where h(a(u), b(u)) : u [U j5 epi( g*) .

TLet S(a, b)5 hx : a(u) x 2 b(u)< 0 for all u [U j denote the solution set,
Tr(x, ha, bj)5 suphmaxha(u) x 2 b(u), 0j : u [U j the residual function, and

d(x, S(a, b))
]]]]t(a, b)5 sup .
r(x, ha, bj)x[⁄ S(a,b)

From the formulas given above it follows that S(a, b)5 S( g), r(x, ha, bj)5 r(x, g),
and t(a, b)5t( g).

Let iai 5 suphia(u)i : u [U j and ibi 5 suphub(u)u : u [U j. For 0<e ,` andf f 1

0<e ,`, a perturbation neighborhood of g is defined as2

T ˜˜ ˜ ˜B( g, e , e )5 hg : g 5 supha(u) x 2 b(u) : u [U jj ,1 2

n 1˜ ˜˜ ˜where a : U → R , b : U → R , ia 2 ai <e , and ib 2 bi <e . A perturbed systemf 1 f 2

g̃(x)< 0 is closely related to the infinite system of linear inequalities defined by
T˜ ˜˜ ˜ha, b j, a(u) x 2 b(u)< 0 for all u [U. Thus we can use the following result for

infinite systems of linear inequalities [2] to prove the well-conditionedness of a
convex inequality.

0LEMMA 1. (a) If there exist K ,`, d . 0, and x such that ixi<K for all
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T 0 ˜x [ S(a, b) and a(u) x 2 b(u)<2d for all u [U, then for any 0<b , 1, ia 2
˜ ˜˜ai <bd /(2K), ib 2 bi <bd /2, it holds that S(a, b )± 5 andf f

21K 1t(a, b)e K 1 2d Ke2 221 21 21 21˜˜ ]]]] ]]]]t(a, b )< 2(12b ) d < 2(12b ) d .2112t(a, b)e 12 2d Ke1 1

˜˜ ˜Furthermore, for all x [ S(a, b ), it holds that

21K 1t(a, b)e K 1 2d Ke2 2˜ ]]]] ]]]]ix i< < .2112t(a, b)e 12 2d Ke1 1

(b) If S(a, b) is unbounded and there exist a unit vector w and h. 0 such that
T 21a(u) w <2h for all u [U, then t(a, b)<h . h

Note that a(U )5 ha(u) : u [U j and b(U )5 hb(u) : u [U j are convex sets, but not
necessarily compact. The results of [2] that use the compactness of a(U ) and b(U )
cannot be applied here.

`For a proper convex function f, let f denote the recession function and
dom( f )5 hx : f(x),`j the domain of finiteness. It is easy to see that a(U )5
dom( g*). Using [7, Theorem 9.4], one can verify that for all 0,e ,`, 0,e ,`,1 2

˜ ˜and g [B( g, e , e ), it holds that g is a closed proper convex function and1 2

˜dom(g )5 dom( g).
As in [4], we say that the system g < 0 is well-conditioned under perturbations

˜ ˜ ˜B( g, e , e ) if for all g [B( g, e , e ), the perturbed system g < 0 is solvable, t(g ) is1 2 1 2

finite and uniformly bounded.

3. The main results
0LEMMA 2. If there exist K ,`, d . 0, and x such that ixi<K for all x [ S( g)

0and g(x )<2d , 0, then for any 0<b , 1, 0<e <bd /(2K), 0<e <bd /2, and1 2

˜ ˜g [B( g, e , e ), it holds that S(g )± 5 and1 2

21K 1t( g)e K 1 2d Ke2 221 21 21 21˜ ]]]] ]]]]t(g )< 2(12b ) d < 2(12b ) d .2112t( g)e 12 2d Ke1 1

˜ ˜Furthermore, for all x [ S(g ), it holds that

21K 1t( g)e K 1 2d Ke2 2˜ ]]]] ]]]]ix i< < .2112t( g)e 12 2d Ke1 1

0 T 0 T 0Proof. As g(x )5 suph(a(u) x 2 b(u)) : u [U j, we have that a(u) x 2 b(u)<
0 ˜ ˜˜ ˜ ˜ ˜ ˜g(x )<2d , 0 for all u [U. Since S(g )5 S(a, b ), r(x, g )5 r(x, ha, b j), and t(g )5

˜˜ ˜t(a, b ) for all g [B( g, e , e ), the result follows from Lemma 1 (a). h1 2

`LEMMA 3. If there exist a unit vector w and h. 0 such that g (w)<2h, 0, then
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˜ ˜for all 0<e ,h, 0<e ,`, and g [B( g, e , e ), it holds that S(g ) is unbounded1 2 1 2
21˜and t(g )< (h2e ) .1

Proof. From [7, Theorems 8.5 and 9.4], the recession function of g(x)5
T ` T T `supha(u) x 2 b(u) : u [U j is g (x)5 supha(u) x : u [U j. Hence, a(u) w < g (w)<

T ˜˜ ˜2h, 0 for all u [U. Let g(x)5 supha(u) x 2 b(u) : u [U j[B( g, e , e ). For all1 2
T T T T˜ ˜ ˜u [U, ua(u) w 2 a(u) wu< ia 2 ai <e and thus a(u) w < a(u) w 1e <2h1f 1 1

`˜ ˜e , 0. Therefore, g (w)<2h1e , 0. As g is a closed proper convex function,1 1
` ˜˜ ˜ ˜g (w), 0 implies that S(g ) is unbounded. Applying Lemma 1 (b) to ha, b j, we have

21˜ ˜˜ ˜ ˜that t(a, b )< (h2e ) . Lemma 3 then follows from the fact t(g )5t(a, b ). h1

`What has not been discussed is the case that g satisfies the Slater condition, g does
not satisfy the Slater condition, and S( g) is unbounded. Under the condition that
dom( g*) is closed, we can construct, as in [4, Theorem 2.4], a set of perturbations
e eg and show that t( g ) cannot be uniformly bounded as e approaches zero.

THEOREM 1. If dom( g*) is closed, then the following statements are equivalent.
`(a) Either g satisfies the Slater condition and S( g) is bounded or g satisfies the

Slater condition.
(b) There exist 0,e ,` and 0,e ,` such that g is well-conditioned under1 2

perturbations B( g, e , e ).1 2

`Proof. (a) ⇒ (b). As g is positive homogeneous, the results follows directly form
Lemmas 2 and 3.

T˜(b) ⇒ (a). Choosing g(x)5 supha(u) x 2 (b(u)2e ) : u [ uj[B( g, e , e ) and2 1 2
0 0˜x [ S(g ), we have g(x )<2e , 0. If S( g) is bounded, then (a) is valid. Now2

`suppose that, on the contrary, S( g) is unbounded and hx : g (x), 0j5 5. It follows
0from [7, Theorem 27.1] and the closedness of dom( g*) that 0[ a(U ), i.e., a(u )5 0

0 efor some u [U. In the rest of the proof, we construct a set of perturbations g and
eshow that t( g ) cannot be uniformly bounded as e approaches zero. Since S( g) is

Tclosed and unbounded, there exists a unit vector z satisfying a(u) z < 0 for all
T 0u [U. For any e satisfying 1/e . uz x u, define

0a(u)1eb(u)z , if u 5 u ;ea (u)5H 0a(u) , if u [U \hu j ,

e e T T 0 e 0g (x)5 supha (u) x 2 b(u) : u [U j, a 5 1/e 2 z x , and x 5 x 1az. One can
verify that

00 , if u 5 u ;e T ea (u) x 2 b(u)5 (1)H T 0 T 0a(u) x 2 b(u)1aa(u) z , 0 , if u [U \hu j .

e e e 0 T 0Therefore, x is a boundary point of S(a , b) and a (u ) x 2 b(u )< 0 is the binding
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0 0 0 T 0 0 0constraint. As g(x )<2e and a(u )5 0, we have a(u ) x 2 b(u )52b(u )<2
0 0 e 0 0g(x )<2e and thus b(u )>e . 0. Hence, a (u )5eb(u )z and z is the unit2 2

enormal vector to the binding constraint at the boundary point x . Consequently, the
e e e e eprojection of x 1az onto S(a , b) is x and d(x 1az, S(a , b))5a. On the other

hand, one can verify, using (1), that

T 0 0 0(12ez x )b(u ) , if u 5 u ;e T ea (u) (x 1az)2 b(u)5H T 0 T 0a(u) x 2 b(u)1 2aa(u) z < 0 , if u [U \hu j .

e e 0 e eHence, r(x 1az, ha , bj)< 2b(u ). As e → 0, we have ia 2 ai → 0, d(x 1f
e e e 0 e e

az, S(a , b)) →`, and r(x 1az, ha , bj)< 2b(u ). Therefore t(a , b)5t( g ) cannot
be uniformly bounded as e approaches zero. The contradiction shows that

`hx : g (x), 0j± 5. h

In particular, if g is a polyhedral convex function, then dom( g*) is closed and
Theorem 1 reduces to [4, Theorem 3.3].

Finally, we use Lemmas 2 and 3 to derive lower bounds on the distance to
ill-posedness for well-conditioned systems.

T n¯¯ ¯ ¯ ¯ ¯Let P 5 hg : S(g )5 5j, where g(x)5 supha(u) x 2 b(u) : u [U j, a : U → R ,
1¯ ¯¯b : U → R , ia 2 ai ,`, and ib 2 bi ,`. The distance to ill-posedness for g [⁄ Pf f

is defined as [6]

¯¯ ¯dist( g, P)5 infhmaxhia 2 a i , ib 2 b i j : g [Pj .f f

0THEOREM 2. (a) If ixi<K for all x [ S( g) for some finite K and there exist x
0and d . 0 such that g(x )<2d , 0, then dist( g, P)>minhd /(2K), d /2j.

0(b) If S( g) is unbounded and there exist a unit vector w and h. 0 such that
` 0g (w )<2h, 0, then dist( g, P)>h.

¯ ¯Proof. (a) Let 0,b , 1 and g [P. It follows from Lemma 2 that either ia 2 a i .f
¯bd /(2K) or ib 2 b i .bd /2, which implies thatf

¯¯maxhia 2 a i , ib 2 b i j.minhbd /(2K), bd /2j . (2)f f

¯Since (2) holds for any g [P, we have

dist( g, P)>minhbd /(2K), bd /2j . (3)

Since (3) holds for any 0,b , 1, we have dist( g, P)>minhd /(2K), d /2j. The
proof of (b) is similar to that of (a) and is omitted. h
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